33 research outputs found

    Prioritizing consumers in smart grid: A game theoretic approach

    Full text link
    This paper proposes an energy management technique for a consumer-to-grid system in smart grid. The benefit to consumers is made the primary concern to encourage consumers to participate voluntarily in energy trading with the central power station (CPS) in situations of energy deficiency. A novel system model motivating energy trading under the goal of social optimality is proposed. A single-leader multiple-follower Stackelberg game is then studied to model the interactions between the CPS and a number of energy consumers (ECs), and to find optimal distributed solutions for the optimization problem based on the system model. The CPS is considered as a leader seeking to minimize its total cost of buying energy from the ECs, and the ECs are the followers who decide on how much energy they will sell to the CPS for maximizing their utilities. It is shown that the game, which can be implemented distributedly, possesses a socially optimal solution, in which the sum of the benefits to all consumers is maximized, as the total cost to the CPS is minimized. Numerical analysis confirms the effectiveness of the game. © 2010-2012 IEEE

    Service composition in stochastic settings

    Get PDF
    With the growth of the Internet-of-Things and online Web services, more services with more capabilities are available to us. The ability to generate new, more useful services from existing ones has been the focus of much research for over a decade. The goal is, given a specification of the behavior of the target service, to build a controller, known as an orchestrator, that uses existing services to satisfy the requirements of the target service. The model of services and requirements used in most work is that of a finite state machine. This implies that the specification can either be satisfied or not, with no middle ground. This is a major drawback, since often an exact solution cannot be obtained. In this paper we study a simple stochastic model for service composition: we annotate the tar- get service with probabilities describing the likelihood of requesting each action in a state, and rewards for being able to execute actions. We show how to solve the resulting problem by solving a certain Markov Decision Process (MDP) derived from the service and requirement specifications. The solution to this MDP induces an orchestrator that coincides with the exact solution if a composition exists. Otherwise it provides an approximate solution that maximizes the expected sum of values of user requests that can be serviced. The model studied although simple shades light on composition in stochastic settings and indeed we discuss several possible extensions

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    Quantifying the predictability of a predictand: demonstrating the diverse roles of serial dependence in the estimation of forecast skill

    Get PDF
    Predictability varies. In geophysical systems, and related mathematical dynamical systems, variations are often expressed as serial dependence in the skill with which the system is, or can be, predicted. It is well known, of course, that estimation is more complicated in cases where the time series sample in‐hand does not reflect an independent from the target population; failure to account for this results in erroneous estimates both of the skill of the forecast system and of the statistical uncertainty in the estimated skill. This effect need not be indicated in the time series of the predictand; specifically: it is proven by example that linear correlation in the predictand is neither necessary nor sufficient to identify misestimation. Wilks [Quarterly Journal of the Royal Meteorological Society 136, 2109 (2010)] has shown that temporal correlations in forecast skill give rise to biased estimates of skill of a forecast system, and made progress on accounting for this effect in probability‐of‐precipitation forecasts. Related effects are explored in probability density forecasts of a continuous target in three different dynamical systems (demonstrating that linear correlation in the predictand is neither necessary nor sufficient), and a simple procedure is presented as a straightforward, good practice test for the effect when estimating the skill of forecast system

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform

    Subgoaling techniques for satisficing and optimal numeric planning

    No full text
    This paper studies novel subgoaling relaxations for automated planning with propositional and numeric state variables. Subgoaling relaxations address one source of complexity of the planning problem: the requirement to satisfy conditions simultaneously. The core idea is to relax this requirement by recursively decomposing conditions into atomic subgoals that are considered in isolation. Such relaxations are typically used for pruning, or as the basis for computing admissible or inadmissible heuristic estimates to guide optimal or satisficing heuristic search planners. In the last decade or so, the subgoaling principle has underpinned the design of an abundance of relaxation-based heuristics whose formulations have greatly extended the reach of classical planning. This paper extends subgoaling relaxations to support numeric state variables and numeric conditions. We provide both theoretical and practical results, with the aim of reaching a good trade-off between accuracy and computation costs within a heuristic state-space search planner. Our experimental results validate the theoretical assumptions, and indicate that subgoaling substantially improves on the state of the art in optimal and satisficing numeric planning via forward state-space search
    corecore